
Apply Physics Informed Neural Network to Solve Navier–Stokes equations

Ning Deng
Weiyang College

dengn22@mails.tsinghua.edu.cn

Gongshu Liu
Department of Electronic Engineering

liugs22@mails.tsinghua.edu.cn

Bowen Ren
Zhili College

rbw21@mails.tsinghua.edu.cn

Abstract

This paper discusses the application of Physics Informed
Neural Networks (PINNs) in solving two-dimensional
steady-state Navier-Stokes equations, with a focus on three
classic fluid flow problems: Poiseuille flow, Kovasznay flow,
and cavity flow. To address issues such as slow conver-
gence, low precision, and gradient vanishing or exploding
encountered in solving the cavity flow problem, a series of
improvements were made, such as introducing the stream
function term and adaptive weights into the loss function.
These measures significantly enhanced the model’s stability
and solution accuracy. By incorporating the stream func-
tion term, the model better satisfies boundary conditions
and fluid continuity requirements, resolving issues related
to gradient explosion and disappearance. Meanwhile, the
use of adaptive weights effectively balanced the importance
of different parts in the loss function, allowing the network
to focus more on those parts that converge slowly or are dif-
ficult to optimize, thus speeding up overall convergence and
improving model precision.

1. Background
The Navier–Stokes equations(NSE)are partial differen-

tial equations which describe the motion of viscous fluid
substances. Classical numerical methods, such as the fi-
nite difference method and finite element method(FEM),
can produce an approximate solution for the NSE. However,
deep learning techniques have recently become popular for
solving PDEs. One such method is the physics informed
neural network (PINN).

1.1. Two-dimensional Steady Continuous Navier-
Stokes Equations

The Navier-Stokes (NS) equations solved in this text are
all two-dimensional steady-state flow fields of NS equa-

tions, which take the following form:

∂u

∂x
+
∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
+ ρ

∂p

∂x
− ν(

∂2u

∂x2
+
∂2u

∂y2
) = 0

u
∂v

∂x
+ v

∂v

∂y
+ ρ

∂p

∂y
− ν(

∂2v

∂x2
+
∂2v

∂y2
) = 0

In the context of the Navier-Stokes equations, where u rep-
resents the velocity component of the flow field in the x-
direction, v is the velocity component in the y-direction, p
denotes the pressure of the flow field, ρis the density of the
fluid, and ν is the kinematic viscosity. Throughout our so-
lution, we arbitrarily choose ρ = 1 and ν = 0.01 , resulting
in a Reynolds number (Re) of 100. Consequently, we adopt
the following form of the equations for subsequent discus-
sion and coding:

∂u

∂x
+
∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
− 1

Re
(
∂2u

∂x2
+
∂2u

∂y2
) = 0

u
∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
− 1

Re
(
∂2v

∂x2
+
∂2v

∂y2
) = 0

whereRe = 100

1.2. Boundary Conditions

This paper selects three classical flows as computational
examples.The solution for all examples will be limited to
[0, 1]× [0, 1].
The first example is the simplest Poiseuille flow. We con-
sider laminar flow in a two-dimensional pipe:

u =

{
y(1− y) at left and right boundaries
0 at other boundaries

1

v = 0at all the boundaries

The second example is the Kovaszney flow, which is an an-
alytical solution to the Navier-Stokes equations, frequently
used to test the performance of Navier-Stokes equation
solvers, and takes the following form:

u = 1− eλx cos 2πy

v =
λ

2π
eλx sin 2πy

p =
1

2
(1− 2e2λx)

whereλ =
Re

2
−
√
Re2

2
+ 4π2

The third example is the cavity flow, a highly nonlinear flow
that can challenge the stability of Navier-Stokes equation
solvers. Its boundary conditions are as follows:

u =

{
1 at top boundary
0 at other boundaries

v = 0at all the boundaries

1.3. Traditional model

In the solution of Examples 1 and 2, this paper employs
the same neural network as used in Rassi’s original paper.
The input of the neural network is set to coordinates (x, y),
and the output is set to stream function and pressure (ϕ, p),
where∂ϕ∂y = u,−∂ϕ

∂x = v. The neural network consists of
four hidden linear layers, each with a size of 32x32, and
employs the SiLU activation function.
In Example 1, 3200 points are randomly sampled along
each boundary and 12800 points are randomly sampled
within the region at each epoch. The neural network gener-
ates the stream function ϕ and pressure p. The average loss
is computed on the boundaries (comparing to the boundary
conditions) and within the region (comparing to the equa-
tion) using the logcosh loss function. Subsequently, opti-
mization is performed using the Adam optimizer. The over-

all loss function takes the following form:

lossboundary =
1

N

N∑
1

log cosh(u− utarget)

+
1

N

N∑
1

log cosh(v − vtarget)

losscentral =
1

N

N∑
1

log cosh(u
∂u

∂x
+ v

∂u

∂y
+
∂p

∂x

− 1

Re
(
∂2u

∂x2
+
∂2u

∂y2
))

+
1

N

N∑
1

log cosh(u
∂v

∂x
+ v

∂v

∂y
+
∂p

∂y

− 1

Re
(
∂2v

∂x2
+
∂2v

∂y2
))

losstotal = lossboundary + losscentral

In Example 2, initially, 51,200 points are sampled within the
region. During each epoch, an additional 12,800 points are
randomly selected within the region. These points are pro-
cessed through a neural network to obtain values for ϕ and
p. The average loss is calculated for both the predetermined
points and the randomly sampled points by comparing them
to the analytical solution and the formula, respectively. This
is done using the cosh loss function. Subsequently, opti-
mization is performed using the Adam optimizer. The over-
all loss function is similar to that in Example 1.

1.4. Result and Reflection

The fundamental PINN model is capable of resolving
these two examples, as can be seen. However, in Example
1, the value of v is slightly overestimated, and in Example
2, the value of u deviates from the analytical solution near
the upper and lower boundaries. This is primarily due to the
fact that in these regions, the value of losscentral is signif-
icantly smaller than lossboundary, leading to the averaging
process overwhelming lossboundary, which in turn results
in incomplete optimization of lossboundary and a less ac-
curate alignment with the boundary conditions. This issue
becomes more severe in the resolution of flow in a square
cavity, and a potential solution to this problem will be dis-
cussed later in this text.

2

Figure 1. phi and p in example 1

Figure 2. u and v in example 1

Figure 3. phi and p in example 2

Figure 4. u and v in example 2

2. Improvement of the loss function
In PINN, the loss function typically comprises four parts:

the initial conditions, boundary conditions, equation resid-
uals, and real data points. However, for the cavity flow
problem of the NS equation solved in this project, the loss
function will only include boundary conditions and equa-
tion residuals. This is because the cavity flow is a steady-
state problem, and we have not employed a data-driven ap-
proach.

LPDE(θ;Tf) =
1

|Tf |
∑
x∈Tf

∥∥∥∥f (
x;

∂û

∂x1
, . . . ,

∂û

∂xd
, . . . ,

∂2û

∂x1∂xd

)∥∥∥∥2

2

LIC(θ;Ti) =
1

|Ti|
∑
x∈Ti

∥û(x)− u(x)∥22

LBC(θ;Tb) =
1

|Tb|
∑
x∈Tb

∥B(û, x)∥22

LData(θ;Tdata) =
1

|Tdata|
∑

x∈Tdata

∥û(x)− u(x)∥22

In the specific solving process, we let the PINN network
produce two outputs, representing the stream function and
pressure, respectively. Here we introduce the stream func-
tion ψ(x, y). The stream function is a scalar function com-
monly used to describe two-dimensional, incompressible,
and steady fluid flow.

• The x-component of fluid motion = the partial deriva-
tive of some stream function with respect to y, i.e.,
u = ∂ψ

∂y .

• The y-component of fluid motion = the negative partial
derivative of some stream function with respect to x,
i.e., v = −∂ψ

∂x .

The advantage of this representation is that it automati-
cally satisfies the requirement of the continuity equation.

Although the overall structure of the loss function has
been established, selecting which and how many physical
quantities to represent the loss function is a challenging
problem. Initially, we only used the velocity components u
and v to compute the loss on the boundary conditions. How-
ever, after numerous experiments, we found that such a loss
function not only converged slowly but also often experi-
enced issues with gradient explosion or vanishing. Initially,
we suspected that the activation function was causing nu-
merical instability, which in turn led to gradient vanishing
or explosion. Therefore, we chose the smoother activation
function SiLU, but the issue still did not improve. Eventu-
ally, we even doubted whether the cavity flow problem, with
its discontinuous boundary conditions, could be solved us-
ing PINNs.

After consulting several pieces of literature, we realized
that adding physical quantities to the loss function could
effectively address the issues of numerical instability that
caused gradient explosion or vanishing. Consequently, we
added the stream function term to the loss function for the
boundary conditions and successfully resolved the prob-
lems of gradient vanishing or explosion. Upon further anal-
ysis, we believe that prior to the inclusion of the stream
function, the neural network may have been trying to sat-
isfy the velocity conditions on the boundaries by adjusting

3

the internal flow field, thus ignoring the global consistency
of the flow field and leading to numerical instability. We had
considered incorporating pressure boundary conditions, but
due to difficulties in obtaining accurate pressure boundary
conditions, we ultimately only used the stream function ψ.

3. Self-adaptive physics-informed neural net-
works

For the loss function, we noticed that there are several
items. While training, it happens that some items converge
to be small, but others are still large. Hence, we used Self-
adaptive physics-informed neural networks. By taking this
method, we give the items that are large more weights, and
the items that are small less, to help the machine focus more
on the large items and find the correct descending direction.
Besides, in the original loss function, different terms rep-
resent the discrepancy between the numerical solutions and
the true solutions across various dimensions. Initially, we
simply summed these different terms. However, in reality,
the same numerical value may reflect varying degrees of
discrepancy for these terms. Therefore, at the beginning of
training, we assign distinct weight functions to each term.

The proposed self-adaptive PINN utilizes the following
loss function

Lr(w, λr) =

Ni∑
i=1

m(λir)[Ni(u(xi, ti;w))−f(xi, ti)]2 (1)

Lb(w, λb) =

Nb∑
i=1

m(λib)[Bi(u(xb, ti;w))−g(xb, tib)]2 (2)

L0(w, λ0) =

N0∑
i=1

m(λi0)[u(x0;w)− h(x0)]
2 (3)

where λr = (λ1r, . . . , λ
Nr
r), λb = (λ1b , . . . , λ

Nb

b),
and λ0 = (λ10, . . . , λ

N0
0) are trainable, nonnegative self-

adaptation weights for the initial, boundary, and residue
points, respectively.

The self-adaptation mask function m defined on (0,∞)
is a nonnegative, differentiable on (0,+∞), strictly increas-
ing function of λ. A key feature of self-adaptive PINNs is
that the loss L is minimized with respect to the network
weights w, as usual, but is maximized with respect to the
self-adaptation weights λ. The corresponding gradient de-
scent/ascent steps are:

wk+1 = wk − η∇wL(w
k, λk, λkb , λ

k
0) (4)

λk+1 = λk + ρ∇λL(w
k, λk, λkb , λ

k
0) (5)

λk+1
b = λkb + ρ∇λb

L(wk, λk, λkb , λ
k
0) (6)

λk+1
0 = λk0 + ρ∇λ0

L(wk, λk, λkb , λ
k
0) (7)

where η > 0 is the learning rate for the neural network
weights at step k, and ρ > 0 is a separate learning rate for
the self-adaptation weights.

∇λr
L(wk, λkr , λ

k
b , λ

k
0) =

1

2 m′(λk,1r)[Nr(u(xr, tr;w
k))− f(xk,Nr

r , tr)]
2

...
m′(λk,Nr

r)[Nr(u(xr, tr;w
k))− f(xk,Nr

r , tr)]
2

 (8)

∇λb
L(wk, λkr , λ

k
b , λ

k
0) =

1

2 m′(λk,1b)[Bb(u(xb, tb;wk))− g(xk,1b , tkb)]
2

...
m′(λk,Nb

b)[Bb(u(xb, tb;wk))− g(xk,Nb

b , tkb)]
2

 (9)

∇λ0
L(wk, λkr , λ

k
b , λ

k
0) =

1

2 m′(λk,10)[u(x0;w
k)− h(xk,10)]2

...
m′(λk,N0

0)[u(x0;w
k)− h(xk,N0

0)]2

 (10)

Hence, since m′(λ) > 0 (the mask function is strictly
increasing, by assumption), then ∇λL, ∇λb

L, ∇λ0L > 0,
and any gradient component is zero if and only if the corre-
sponding unmasked loss is zero. For example, we may set
the mask function m(λ) = cλq , for c, q > 0. Then, if some
items of the loss function are larger, the respective gradient
of λ is larger, leading to an increase in the respective λ.

4. Result
We applied the improved PINN model to solve the cav-

ity flow problem, and after 10,000 epochs, we were able to
achieve relatively good fitting results.

Figure 5. phi and u of Cavity Flow Predicted by PINN

4

Figure 6. v and p of Cavity Flow Predicted by PINN

Figure 7. Comparison of Training Loss Across Three Models

Furthermore, we compared three models: the original
model, the model with the addition of the stream function
loss but without adaptive weights, and the model with both
the stream function loss and adaptive weights. We found
that both the second and third models had faster conver-
gence rates compared to the first model. Additionally, when
the number of epochs was sufficiently large, the accuracy of
the third model was relatively higher.

5. Reference
[1]Levi D. McClenny, Ulisses M. Braga-Neto

(2023).Self-adaptive physics-informed neural networks.
[2]Levi D. McClenny, Ulisses M. Braga-Neto, Self-

adaptive physics-informed neural networks, Journal of
Computational Physics, Volume 474, (2023).

[3]M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlin-
ear partial differential equations,Journal of Computational
Physics,Volume 378(2019)(P 686-707).

5

